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Large Deviation Bounds
A typical probability theory statement:
Theorem (The Central Limit Theorem)

Let Xi,...,X, be independent identically distributed random
variables with common mean ji and variance 0. Then

1 Z” 2 — U 1 z )
lim Pr(2==1"C — =— —t/24t.
jm P2t <= [ e

A typical CS probabilistic tool:
Theorem (Chernoff Bound)

Let Xi,...,X, be independent Bernoulli random variables such
that PI’(X,' = 1) = p;. Let p = %27:1 pi, then

1« "
Pr(=Y " X; > (14 0)p) < e #m°/3,
r(”,-El >(1+du)<e
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The basic Bound

Theorem (Chernoff Bound)

Let Xy, ..., X, be independent Bernoulli random variables such that
Pr(Xi=1)=p;. Let X =137 X;and p= E[X] =137, p;, then

—_

72 > (14 )p) < e Hm0’/3,

3

Applying Markov Inequality, for any t > 0,

c tnX tn(1+0)p E[et”X]
Pr(X > (1 +8)u) = Pr(e™ > e e

Since the X;'s are independent, E[e"X] = []"_, E[e].

Theorem (Markov Inequality)

If a random variable X is non-negative (X > 0) then Prob(X > a) < @
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Let X = 15°" X;, and E[e"™*] = []"_; E[e™].

E[etX"] = p,-et + (1 — p,-) =1+ p,'(et — 1) < ePi(e'=1)

e = T o) < [[ert9-0 = hamte- - o

For any t > 0,

E[etnX] e(etfl)n,u
et(1+30)nu = et(1+d)nu

Pr(X > (1+6)u) = Pr(e™ > ef(1+5)nu) <

For any § > 0, we can set t = In(1+J) > 0 to get:
0

np
e s
FE= = <(1+5)<1+6>) < e

4/47



Comparing the Different Bounds

Consider n coin flips. Let X be the number of heads.
Markov Inequality gives

Pr x>@ <22
~ 3n/4 — 3

Using the Chebyshev's bound we have:

r(be-2l= ) < A= 5

Using the Chernoff bound in this case, we obtain

1 .
Pr (X i <1+ 2>> < e 53

INT
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Why Strong Bounds?

® A service provider sells contracts to N customers.

® At the beginning of each day a customer requests a server for the
day with probability p, independent of all other requests.

® |f the number of requests exceeds the number of servers the system
crashes.

® How many servers does the provider need to install so that the
probability of a crash is smaller than 1/N?

Let X be the number of requests. E[X] = Np, Var[X] = Np(1 — p).
Assume that Np + M servers are installed.

Using Chebyshev's inequality Pr(X > M + E[X]) < ML2P) < 1 \we
need M > N./p(1— p).

Using Chernoff inequality Pr(X > Np(1+ NMP) <e
need M > 3./Nplog(1/n).

N,
2

%) < 1/N. We
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Moment Generating Function

Definition

The moment generating function of a random variable X is defined
as
Mx(t) = E[e™],

for any real value t for which the expectation exists (is bounded).

The moment generating function uniquely defines a distribution:

Theorem

Let X and Y be two random variables. If Mx(t) = My(t) in some
neighborhood of 0, then X and Y have the same distribution.
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Theorem

Let X be a random variable with moment generating function
Mx (t). Assuming that exchanging the expectation and
differentiation operands is legitimate, then for all n > 1

n n dn
E[X"] = M(0) = Z - Ele™]

t=0

where M&")(O) is the n-th derivative of Mx(t) evaluated at t = 0.

Proof.

MP(t) = E[X"e].

Computed at t = 0 we get

M)(0) = E[X"].
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Why we can switch the order of the derivative and the expectation?

Assume for simplicity that X has integer values. Let D(X) be the
domain of X.

Mx(t) = E[e™]= > e"Pr(X =i).
ieD(X)

For finite or uniformly convergent sum:

MP () = %E[etx]:% S etPr(x =)
ieD(X)
_ d i o i ti
= Z 7€ Pr(Xfl)fE[dte |
ieD(X)
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Theorem
Let X and Y be two random variables. If

Mx(t) = My(t)

for all t € (—0,0) for some § > 0, then X and Y have the same
distribution.

Theorem
If X and Y are independent random variables then

Mx vy (t) = Mx(t)My(t).

Mx 1y (t) = E[e®XTY)] = E[e®]E[etY] = Mx(t)My(t).
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The Basic ldea of Large Deviation Bounds:

For any random variable X, by Markov inequality we have:
For any t > 0,

E[etX]
_ tX ta
Pr(X > a) = Pr(e” > &%) < NP
Similarly, for any t < 0
E tX
Pr(X < a) = Pr(e™ > e%?) < [:ta ]

Theorem (Markov Inequality)

If a random variable X is non-negative (X > 0) then

Prob(X > a) < E[aX].
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The General Scheme:

For any random variable X:

® computing E[e]
® optimize
E tX
Pr(X > a) < min [et ]
t>0 et
. E[e¥]
<
PriX )< 0 eta
© symplify
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Chernoff Bound for Sum of Bernoulli Trials

Theorem
Let Xi,..., X, be independent Bernoulli random variables such
that Pr(X; =1) =p;. Let X =37, Xi and p= >, pi.

® foranyd >0,

PHX > (1+ 6)p) < (W) | (1)
e For0< o<1,
Pr(X > (1+68)p) < e H0°/3 (2)

® For R > 6y,
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Chernoff Bound for Sum of Bernoulli Trials

Let Xi,...,X, be a sequence of independent Bernoulli trials with
Pr(Xi =1) = p;. Let X =", Xj, and let

n n n
ZX,' :ZE[X,'] :ZP,‘-
i=1 i=1 i=1

u=E[X]=E

For each X;:

Mx(t) = E[e™]

= pie' +(1-p))
= 1+pi(ef—1)
< ePf(etfl)'
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Mx,(t) = E[e™] < ePileD),

Taking the product of the n generating functions we get for
X = 27:1 Xi

Mx(t) = ﬁ Mx(t)
i=1

n

< H ePi(e’=1)

i=1
_ eXlip(e-1)

— e(et_l)u
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Mx(t) = E[e™] = (=

Applying Markov's inequality we have for any t > 0

Pr(X > (1+6)u) = Pr(eX > et(+on)
_ E[etX]
- et(l+o)u
elet=1)u
S @

For any 6 > 0, we can set t = In(1+ §) > 0 to get:

0 ©

This proves (1).
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We show that for 0 < § < 1,
e‘s < 752/3
(14 6)2+0) =

or that f(6)=6—(1+0)In(1+6)+62/3<0
in that interval. Computing the derivatives of 7(J) we get

ey — g 1t0 2, 2
F(0) = 1= s —In(l+0)+ 36 =—In(1+3)+ 3.
1 2
f/l _ —.
(9) 140 3

f7(6) < 0for0<¢d<1/2, and f"(5) >0 for § > 1/2.

f'(0) first decreases and then increases over the interval [0, 1].
Since f/(0) = 0 and (1) < 0, /() < 0 in the interval [0, 1].
Since f(0) = 0, we have that f(J) < 0 in that interval.

This proves (2).
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For R > 6u, 6 > 5.

Pr(X > (1+ 8)p)

N
Y
>+
>4 | D
~ ©
=
+
)
N—
=

(VAN
N —

IN

that proves (3).

18/47



Theorem

Let Xi,...,X, be independent Bernoulli random variables such
that Pr(X; =1) = p;. Let X =37 ; X; and n = E[X].
For0 <o < 1:

° - .
Pr(X < (1-0)p) < <(1_5)(1_5)> : (4)
Pr(X < (1—68)u) < e H%/2, (5)
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Using Markov's inequality, for any t < 0,

Pr(X <(1—08)u) = Pr(eX > ell=0tn)
_ E[etX]
- et(1-0)u
ele'=1)u
= et(1=0)u

For0 <o <1, wesett=In(1-0)<0 to get:
- 1 5272
_ - —
Prix < (10 < (=555 ) <

This proves (4).
We need to show:

F(0) = =6 — (1 —98)In(1 —0) + %52 <0.
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We need to show:

f(0) = -6 —(1—10)In(1—0)+ %52 <0.

Differentiating 7 (J) we get

F(5) = In(1—36)+3,
f'(6) = ———=+1.

Since () < 0 for 6 € (0,1), /(9) decreasing in that interval.

Since f'(0) =0, f'(0) <0 for § € (0,1). Therefore () is non

increasing in that interval.

f(0) = 0. Since () is non increasing for § € [0,1), f(J) <0 in
that interval, and (5) follows.
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Theorem .
Let Xi,...,X, be independent Bernoulli random variables such
that Pr(X; =1) = p;. Let X =37, X; and p = E[X].

For0 <o < 1:

Pr(X > (1+6)p) < e #9°/3,

Pr(X < (1—6)u) < e #9°/2,

Let X =137 X;. and i = E[X].

Pr(X > (1 +0)f) < e "m°/3,

Pr()_<

IN

(1-8)m) < e /2,
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Example: estimate the value of 7

N
\

/

® Choose X and Y independently and uniformly at random in

[0, 1].
® |et
S 1 ifVXTEYI<,
| 0 otherwise,

1
2
° 4E[Z] =T
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Let Z1,...,Z,, be the values of m independent experiments.
Wn=>"172.

m

37

i=1

E[W,,] = E

~ mT
= ; E[Z,] — T,

® %, = 2 W, is an unbiased estimate for 7 (i.e. E[ffp] = )

® How many samples do we need to obtain a good estimate?
Pr(|fim — 7| > ex) = Pr (|Wf %| > ””T”)

= Pr(| Wi — E[W]| > cE[Wa))
= Pr(W, — E[Wp] > eE[Wy]) + Pr(Wp, — E[W,] < eE[W,)])

< e7%¥ : + efé%fz < 2671712"7”62_
Since it's easy to verify that 7 > 2

Pr([fm — | > em) < 20" M€ < ¢=4m — 5

For ¢ = 0.1 and § = 0.01 we need m > 4000.
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Set Balancing

Given an n x n matrix A with entries in {0,1}, let

all aio dln b1 c1
axl ax ... a by e))
an an2 ... ann bn Cn

Find a vector b with entries in {—1,1} that minimizes

HAEHOO = max |c|.
1= n
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o O O o

O O O o

O = = O

O = = O

O = O =

O = O =

Example:

1 1 —2
1 R 0
1 S R |
1 -1 -1

||.Al;||C>O = max |¢|=2.
i=1 n

-----

[ W G Ty
[ary

HAEHOO = max |¢|=1.
1 n

7777
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Set Balancing

Given an n x n matrix A with entries in {0,1}, let

ail aw ... ain b c1
a1 ax» ... ax b> o)
dnl dn2 ... dnn b Cn

Find a vector b with entries in {—1,1} that minimizes

[14b]|o, = max |cjl.
=1,...,n

1

We'll show:

* A random b gives Pr(||Ab||o > V4nInn) < 2.
e There is a matrix A for which || Ab|| = Q(y/n).
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Theorem

For a random vector b, with entries chosen independently and with
equal probability from the set {—1,1},

- 2
Pr(||Ab||occ > V4nInn) < —
n
or
2
Pr( max{c, Za,lb } > Vanlnn) < -

For a given 7, ¢; = " ; a; jbj, where a; ; is either 0 or 1, and b; is

=

either —1 or 1.
We need a bound on the sum of random variables with values in
{-1,1} .

We need a strong bound (< 1/n) so we can use union bound over
the n rows.
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Chernoff Bound for Sum of {—1,+41} Random
Variables

Theorem

Let Xi,..., X, be independent random variables with

1
Pr(Xi=1)= Pr(Xi = -1) = 5.

Let X = 7 X;. Foranya>0,

22

Pr(X > a) < e 5.

de Moivre — Laplace approximation: For any k, such that
|k —np| < a

<n> pk(l — p)n_k ~ ;eibm(affp)
k 27np(1 — p)
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For any t > 0,

1
E[etX,-] _ —i-*e_t
2
£2 ¢
et =14+t+ -+ -+ —+
2! il
and .
1.'2 ,_tl
_1—t+2|+ —&-(—l)ﬁ—k
Thus,
E[etX] Eet%—}e_t—z 2
2 2 (2i)!

IA

—~~

=™
N

n

N

~

N
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E[e™] = [] E[e™] < e™/2,
i=1

E tX
Pr(X 2 a) = Pr(etX > eta) S y S etzn/Z—ta‘
e a
Setting t = a/n yields

22

Pr(X > a) <e .
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By symmetry we have

Corollary

Let Xi, ..., X,, be independent random variables with

1
Pr(X,- = 1) = Pr(X,- = —1) = 5

Let X = " | X;. Then for any a > 0,

2

Pr(|X| > a) < 2e” .
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Application: Set Balancing

Theorem

For a random vector b, with entries chosen independently and with
equal probability from the set {—1.1},

Pr(||AB|| > Vaninn) < > (6)

S

Consider the i-th row a; = a;1,..... aj .
Let k be the number of 1's in that row.

= 31 aibi
If kK < +/4nlnn then clearly Z; < Vanlnn.
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If kK > +/4nlog n, the k non-zero terms in the sum Z; are
independent random variables, each with probability 1/2 of being
either +1 or —1.

Using the Chernoff bound:

2

Pr{\z/, > /4n|0gn} < 2e74n|ogn/(2k) < 2e74n|ogn/(2n) < =,

n

where we use the fact that n > k.
The result follows by union bound on the n rows.
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Hoeffding's Inequality
Large deviation bound for more general random variables:

Theorem (Hoeffding's Inequality)

Let Xi,...,X, be independent random variables such that for all
1<i<n, E[Xj]=pand Pr(a< X; <b)=1. Then

1 n
Pr(l- 37X — | > €) < 2e72ne/(b=a)
i=1

Lemma

(Hoeffding's Lemma) Let X be a random variable such that
Pr(X € [a,b]) =1 and E[X] = 0. Then for every X\ > 0,

E[E)\X] < e/\2(afb)2/8'
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Proof of the Lemma

Since f(x) = ™ is a convex function, for any o € (0,1) and
x € [a, b],
X) < af(a) + (1 — a)f(b).

f(
Thus, for o = 2= € (0,1),

b—x X —a

AX Aa b

e < —e 4 —e™".
b—a b—a

Taking expectation, and using E[X] = 0, we have

E[e)\X] < bfae/\a 4 biae/\b < N (b—a)?/8

36/47



Proof of the Bound

Let Z = X; —E[X;]and Z =137 | X;.

A2(b—a)?
8n

n
Pr(Z > 6) < ef)\eE[e/\Z] < ef)\EHE[e)\X;/n] < ef)\e+
i=1

Set A = ( )2 gives

1 — 2 2
P 75 Xi — | > €) = Pr(Z > €) < 2¢2n¢’/(b=2)
f(|n'7 pl =€) r(Z>e€) <2e
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A More General Version

Theorem
Let Xi,..., X, be independent random variables with E[X;] = p;
and Pr(B; < X; < Bj+¢;) =1, then

2¢2

n n
PRI Xi = D mil 2 @) <2e e
i=1 i=1
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Application: Job Completion

We have n jobs, job i has expected run-time ;. We terminate job
i if it runs Su; time. When will the machine will be free of jobs?
X; = execution time of job /. 0 < X; < Bpu;.

22(20y mi)?

ZONE Zu,\>eZu, <2e R
i=1

Assume all uj = p

252 n2;L2

|ZX — np| > enp) < 2e BT = 2e—2¢°n/3?
i=1

Let e = 3 Iog" , then

2,82;1,2n|0gn 2

Pr(1>_ Xi — np| > Buy/nlogn) < 2e” o2 = =5
i=1

n2
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Dimension Reduction

Given a set of m points X!, ..., %™ € R" we what to find a set of

m points ¥, ..., 7™ € RY such that
® d<<n
® Forall 1 </ <m, ' ‘
[1X" || ~ |31

® Forall i and j _ _ _ '
X' =X~ [[y" = 7.

® || - || is the standard Euclidean norm:

n d
S il =4 %
k=1 k=1

® There is an efficient randomized algorithm to compute the
projection.

40 /47



Main Result

Theorem

Given arbitrary X*,.... X" € R", any 0 < ¢ < 1, and some
d= O('°§2m), there are 7', ..., y™ € RY such that

® Foralll<i<n,

L= alIEl < 117l < @+ Il

® Foralli and j,

(L—allx" =& < I7' = 7l < (L + )| = &
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Proof:

Let ¥ = (x1,....x,)" € R" be arbitrary.
Let 7 be an n x d matrix with i.i.d. entries T;; ~ N(0,1).

Define the transformation Y = % Tx. Y =(Y1,..., Yq).

1 n
Y, = — E Tiix.
\/2] =1 s

V/dY; is distributed N(,> 7, sz) = N(0, ||x|[?),

_ Vdy;

The Y;'s, and therefore the Z;'s are independent r.v.’s.
We are interested in || Y||? = 27:1 Y2 = @ Zf’zl Z2.
What is the distribution of 27:1 z2?
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Large Deviation Bound for y? Distribution

If Z; ~ N(0,1) then Hy = 27:1 Z? is distributed x%d).

The moment generating function of H; (for 0 < t < 1/2) is:

1 oo
E[eth] = Ner: / e e 727 et u= 21 _2tand t < 1/2
J —00
— 1/OO eﬂﬂ/zdu: ;
V2ry1 =2t J o V1-2t

(1-2t)"92  (1+¢) —de2)2
< 7 < e /2,

2
Pr(Hg = d(1+€)7) < etd(14+€)2 = _d((1+4e)2—1) —

e

For t = %(1—ﬁ)< 1/2.
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) X2 &,
[ Zy, D4
=1

d
Pr(Hg = Z2 > d(1+¢)?) < e=9%/2
i=1

Priliyll = (T +e)llxl)) = (|b/||2 (1+e)?[|x]%)
P25 4 )
i=1
< e—de2/2 < %

for d = 4'2%'".
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For d — 2(log m+|20g(6/2))’

€

Pr(llyl| = (1 + €)||x||) < e~9¢/2 = %

Similar result for Pr(||y|| < (1 —€)||x]|).

Union bound on m + (%) events:

® Forall1<i<n (1—o)lx|| <[]yl <1+ e)lx]

® Foralli#j, (1—¢)||x' =&|| < ||y = 7|l < (1 +)|Ix" = =]
For d = w a random construction provide a good
projection with probability 1 — 0.

Since the probability that all these events hold simultaneously for a
random matrix T is > 0, their must be a projection that satisfies
all the requirements.
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Theory: Sub-Gaussian and Sub-Exponential

Distributions
The MGF of Z ~ N(0,1) is

E[etz] _ etrzefz2/2dZ _ 1 /oc e —L(z—t)’+%/2 _ et2/2

The MGF of X ~ N(0,c) is

e 2t2/2

Ele¥] = e™e 202dx

=T

The MGF of {—1,+1} with probabilities 1/2,1/2 is
E[etX] =< et’/2
The MGF of X such that Pr(X € [a,b]) =1 and E[X]| =0, is

E[EtX] < etz(a—b)2/8_

A centered (E[X] = 0) random variable is Sub-Gaussian if
there is a constant ¢ such that E[e®X] < et
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Theory: Sub-Gaussian and Sub-Exponential
Distributions

A centered (E[X] = 0) Sub-Gaussian random variable
satisfies, for some constant ¢ > 0,

Pr(|X| > a) < e,

A sum of independent Sub-Gaussian random variable is
Sub-Gaussian.

If X is Sub-Gaussian then X? is Sub-Exponential.

If Y is Sub-Exponential then for some constant ¢ > 0,

Pr(lY] > a) <e <.

A sum of independent Sub-Exponential random variable is
Sub-Exponential.
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